2238 - 排列的和permutation
Description

给了你一个正整数 n,你需要对每个 s = 0, 1, 2, \dots, n^2,求出有多少个 1 \sim n 的排列 p,满足:

\sum_{ = 1}^nmax(i, p_i) = s

答案对 P 取模。


Input

一行两个正整数 n, P


Output

输出一行 n^2 + 1个非负整数,用空格分开,表示 s = 0, 1, 2, \dots, n^2的答案。

Examples

Input

3 100

Output

0 0 0 0 0 0 1 2 3 0

Input

4 114514

Output

0 0 0 0 0 0 0 0 0 0 1 3 7 9 4 0 0
Hint

样例1解释:

共有 6 个排列:

p = (1, 2, 3)\sum_{i = 1}^nmax(i, p_i) = 6

p = (1, 3, 2)\sum_{i = 1}^nmax(i, p_i) = 7

p = (2, 1, 3)\sum_{i = 1}^nmax(i, p_i) = 7

p = (2, 3, 1)\sum_{i = 1}^nmax(i, p_i) = 8

p = (3, 1, 2)\sum_{i = 1}^nmax(i, p_i) = 8

p = (3, 2, 1)\sum_{i = 1}^nmax(i, p_i) = 8


题目参数
Time Limit 3 seconds
Memory Limit 512 MB
提交次数 8
通过次数 5